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QUASI-CLASSICAL DESCRIPTION
OF ONE-NUCLEON TRANSFER REACTIONS
WITH HEAVY IONS

S.I.Fedotov, V.K.Lukyanov

The heavy-ion one-nucleon transfer reactions are considered using the dis-
torted waves obtained in the framework of the high energy approximation
(HEA) method in the three-dimensional quasi-classics. The bound state nucleon
wave function is presented in a form of the derivative of the Fermi function. The
Cross section is obtained in the analytic form, showing the main physical features
of the reaction mechanism. The results of calculations are in good agreement
with experimental data.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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PaccMaTpuBaroTCst OXHOHYKJIOHHBIE NEPEAAYM B PEAKUHMAX C TSOXKENbIMU
HOHAMH C MCIIONb30BAHUEM MCKAXKEHHBIX BOJIH, [IQJIyYEHHBIX B PAMKAX METOHA
BLICOKOIHEPTreTUHECKOro mpubamxenus (BIII) B TpeXMEpPHOH KBASMKIACCH-
ke. Bonnosas GyHKIMS CBS3AHHOTO COCTOSIHMSI HYKJIOHA BbhiGMpaeTcs B BuAe
npou3BoaHOM ot hepmu-byHKIMM. [TnddepeHUHaNbHBIE CEYEHHUS IOMYYaI0T-
C B aHAJIMTUYECKOM BHJIE, YTO NO3BOJISET MOHATH OCHOBHBIEC CBOMCTBA Mexa-
HHM3Ma peakuuii. Pe3yibTaTel pacueToB HAXOAATCS B XOPOUIEM COIIACHH C IKC-
MEPUMEHTAJIbHBIMM AAHHBIMH.

PaGora srinonnena B JlaGoparopuu teoperuueckost dusmxu um.H.H.Boro-
so6osa OUSIH.

1. Introduction

The traditional consideration of the high-energy transfer reactions with
heavy ions is based on a partial wave representation of the in- and out-dis-
torted waves. To this aim, at energies of several dozen MeV per nucleon, it
is necessary to numerically calculate a lot of partial waves which introduce
both the hard numerical problems and difficulties in searching for the
physics of the reaction mechanism. To avoid these difficulties, we apply the
HEA-method developed for calculations of the three-dimensional quasi-clas-
sical wave functions and for the corresponding matrix elements with these
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functions included [1,2]. The method can be applied under the conditions
kR>>1,E>>V and 0 >0 = VI /E, where 6. is the classical deflection

angle. This latter is introduced to include distortion of the straigt-line
trajectories of motion, the important point in investigating the heavy-ion
collisions. On the whole, this gives us the possibility of avoiding complicated
numerical calculations and obtaining, in the framework of the DWBA, ana-
lytical expressions for qualitative physical estimations and for a quantitative
comparison with experimental data.

2. Differential Cross Section

For simplicity, we consider the reaction a + A -» » + B with transfer of
a spinless x-particle when the corresponding cross section and the ampli-
tude in the zero-range approximation are as follows:
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where

D,= 8z V(m ah2/ 2m m b)se "
depends on the structure of an incident particle, ¢ «p 18 the separation energy
and R (1) is the radial wave function of the x-particle in the final nucleus B.
The latter has the asymptotic behaviour exp (—k | r)/r and goes to the con-

stant as r - 0. We have emphasized that the main effect in heavy ion reac-
tions comes from the region near the interaction radius. This means that the
behaviour of the function ERI atr << R is of no importance, and one can

select it in the form

_ V6a, df (r, R, a)
r

R ,(r) ar , 2.3)
where sinh R
= T p—
*  cosh g + cosh aL 1+ exp r—R 2.4)
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is the symmetrized Fermi function having the asymptotics exp (—%; r)/rand

being a constant at r = 0; the function (2.3) is normalized to 1, and the
«diffuseness» of the transition region is to be taken a= 1/ k[, where kl =

=v 2m g 1/ h? with ¢ p the separation energy.

Inserting (2.3) into (2.2), we get the amplitude of the typical form inhe-
rent in HEA. Moreover, here we can use the quasi-elastic approximation
because the loss of energy in the reaction is comparatively small and
E = E,. Thus, the QC-distorted waves are calculated as in the elastic

B
channel. The product \I’g_)' le:) has the following form [1,2]
\lll(g_)* \Pf;') = exp (i D), 2.5
where
b= 2a,+ Bu + nl,u2+ cly3+
2 2— 2 2 —
+n,(1 —p%)cos“p +cyu (1 —p")cos”yp (2.6)
and ﬁ, ¢ and n are expressed through r, parameters of the potentials,
a = sin (68/2),anda o= -21? [V(R) + V.(R) + iW(R)], taken at the radius

R, of the external limited trajectory of motion. For example,

B=ar= Gy + 2kgar; g, = 2k(a — a.);
vy oW, pC(a_ )]
ky=—|B"+iB"+ B 3—'—2 , Q.7
R
)
where
2
| 4 W, Z Ze
V- _0. w__0. c_ 172
B = B" = T B Rchv .

The other functions in (2.6) are done in [1].
We can see that now the integrand (2.2) contains in the exponent a
typical power dependence on the variables r and u. Keeping in mind that

dr= - rzdrdudﬁ, we first integrate in (2.2) over du by parts
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neglecting the second term having the smallness (kR)_2. The result is

_lv jl'l"

1= exp (2i ay+ in,) - (- )11( =)k

Fen exp [+ i(ﬁ+ )] ‘
A(:) 7 6(:) cos’p

2.9

A(t) =g+ 3c;x2n; 6(1)-—- 2(ny * c,). (2.10)
Theﬂ, the integration over dp can be performed with the help of a table
integral. Thus, we can write the amplitude (2.2) in the form of a one-dimen-
sional integral [1,2]:

T = —iD, Voma (2l + 1) e’z"o of S {FD(r) - () F)(n}dr,.11)

where .
F ) = i”;&” = exp [+ iD*]; (2.12)
=g *—InL*; pr= firx f2r2+ f3r3
L*= V({5 fr + 1) (2 + 1,7 2.13)

with £, the functions of parameters of the potentials, « and a

v w
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Integrals of the type (2.11) can be caclulated in the analytical form if
one uses the second order poles on the complex r-plane of the derivative
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df /dr in the region of the nuclear surface at r: =R*in(2n+1) q,

where n = =0, 1, 2... It is easy to show that the main contribution to (2.11)
is coming from the two poles closest to the real axes of r. Then, the final
expression for the differential cross section is as follows:

do e 2 2+l 4B"R _|1d ) (+)]
—= = 6a’S - D +
Q=S @ e - PP
1[d o |*
+(-) [Eexp (- i® )] % 2.15)
rO

Thus, we can conclude that here we have the general exponential dec-
rease at angles 6> Bc, depending on the acting thickness a, in the region

of the surface of transition [3]. The magnitude of the cross section is
determined by the slope of a «tail» of a bound state function in the final
nucleus B.

3. Conclusion

Figure 1 shows calculations (solid line) and comparisons with experi-
mental data (squares) from [4]. We can see that the differential cross
section is decreasing with the angle of scattering as an exponential function
with a slope determined by the thickness parameter a, characterizing the

corresponding form factor behaviour in the surface area of interaction. In
Fig.1, the solid line corresponds to a = 0.4 fm. The spectroscopic factor was

taken to equal 1. The other parameters are Vo= 50 MeV, W= 19 MeV,
Tov™ Tow="0c = Tor= 1.2 fm.

In our calculations the absolute values of theoretical cross sections are
presented. The absolute values of the cross sections and their form strongly
depend on the imaginary part of the complex potential. In the case of a
potential when W, is very small, the main part of differential cross section

~ exp (— 2ta, k (® — © )) cos’(kR®) for even ! (solid line in Fig.2) and
~ exp(— 2ta, k (© — ) sinz(kR(-)) for odd [ (dashed line in Fig.2). We

see that the cross section is decreasing with the angle of scattering as an
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Fig.1. The transfer reaction cross sections: 12C + 7A1 » !'B + Bgi. £ = 50 MeV/n,
exp. data (squares) from (4], solid lines — theory

exponential function and simultaneously oscillates. The oscillation with
even [ are out phase with those with odd /. The solid line with stars
corresponds to Wy= 10 MeV, when the oscillations start to appear.

We can summarize that investigations of heavy ion collisions in the
quantum region of scattering angles © > @C, outside the limited trajectories

of motion, are very sensitive to the precise structure of a nuclear-nuclear
interaction. For instance, the slope of the curves with © feels the «thickness»
of the acting region in the corresponding channel. It may be used also for
searching the «halo» distributions of nuclei in the radioactive beams which
now become available. We hope that the HEA-method suggested can be suc-
cessfully used in both the qualitative and quantitative analysis of direct
" reactions.
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Fig.2. The solid line shows the cross section calculated for the same reaction by using Wy=1MeV,
{ = 2, the dashed line shows the cross section calculated by using W,= 1 MeV, [ =1 and the solid
line with stars shows the cross section calculated by using Wy=10MeV, /(=2
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